
Kruskal's MST Algorithm

In Wednesday's class we looked at the Disjoint Set
data structure that splits a bunch of data values
into sets in such a way that each datum is in
exactly one set. There are 2 primary methods for
this structure: Find(x), which gives the set
containing x, and Union(x, y), which merges the
sets containing x and y into one set.

Clicker Q: What does the Find(x) method actually
return?

A. A string with the name of the set containing
x.

B. An array list of the elements of the set
containing x.

C. A HashSet of the elements of the set
containing x.

D. One element of the set containing x, called
the "root" of the set.

Clicker Q: How does Union(x, y) join the sets
containing x and y?

A. It finds all of the elemIents of the set
containing x and adds them to the set
containing y.

B. It makes x point at y.
C. It makes the root of the set containing x

point at y.
D. It makes the root of the smaller of the two

sets point a the root of the larger of the two
sets.

Last Clicker Q: How long do Find(x) and Union(x,y)
take if our sets contain a total of n objects?

A. Find: O(n) Union: O(n*log(n))
B. Find: O(n) Union: O(n)
C. Find: O(log(n)) Union: O(n)
D. Find: O(log(n)) Union: O(n)

Joseph Kruskal, a mathematician/computer
scientist/statistician at Bell Labs, developed
another minimum spanning tree algorithm that
uses our Disjoint Set data structure. Here is his
algorithm:

Kruskal's Algorithm: Order the edges of the graph
from smallest to largest. Call MakeSets() on the
nodes of the graph, consider each of them to be a
singleton set. Now take the edges in order from
smallest to largest. Let u and v be the nodes
connected by an edge. If Find(u) == Find(v), which
means that u and v are already connected, then
discard the edge. If Find(u) != Find(v) include this
edge in our spanning tree and merge the sets
containing u and v.

Kruskal's algorithm will certainly form a graph
with no cycles; when it gets n-1 edges it will
connect all of the nodes of the graph and so will
be a spanning tree. How do we know it is a
minimum spanning tree?

Recall the theorem we proved for Prim's algorithm:

Theorem: Let S be any set of nodes in an
undirected weighted graph, all of whose edge
weights are distinct. Let e, the edge from node v to
node w, be the cheapest edge that connects some
node in S to a node not in S. Then edge e must be
included in any minimum spanning tree for the
graph.

Let S be the set of nodes connected to v at the time we
choose this edge. w cannot be in S, or else this edge
would form a cycle. So e is an edge connecting S to the
complement of S. If there was a cheaper edge
connecting S to its complement, we would have
considered it previously (since we are taking the edges
from smallest to largest) and we would have used it
since it doesn't form a cycle. This means that edge e is
the cheapest edge connecting S to its complement;
according to the theorem any minimum cost spanning
tree must include e. Even if the edge weights aren't
all distinct, no cheaper tree can exist that does not
include e.

Thus, we see that the edges chosen by Kruskal
must form a minimum cost spanning tree.

A B

C

FD

E

G

2

3
4

1

9

1 2

5

3
7

4

3

Kruskal's algorithm considers the edges in increasing order
and uses those that connect nodes that are in different
connected components. For example:

We consider the edges in the following order:

1. D-C
2. D-E
3. A-B
4. F-E
5. B-G

6. C-F
7. C-B
8. A-C
9. F-G
10. E-C

11. B-F
12. A-D

A B

C

FD

E

G

2

3
4

1

9

1 2

5

3
7

4

3

The first 5 edges we consider cause no problems:

So far we have selected 5 edges to connect our 7
nodes. The nodes fall into 2 connected
components: {C,D,E,F} and {A,B,G}. We need one
more edge. The next edge in order is C-F but C and
F are in the same component. The next edge is C-B
and those vertices are in different components, so
that completes our spanning tree.

A B

C

FD

E

G

2

3
4

1

9

1 2

5

3
7

4

3

Kruskal produces the same minimum spanning tree as
Prim, which is no surprise. Note that we only considered
about half of all of the edges when we were choosing
edges for the spanning tree

What is our time analysis? We could form a priority queue
with the edges and their weights; it takes time O(|E|) to
make the queue and time O (log(|E|)) to poll it. We would
make disjoint sets containing the nodes of the graph; this
takes time O(|V|) to make the singleton sets and time O(
log(|V|) each time we do a find. Each step does a poll of
the priority queue, 2 find operations, and possibly a union,
making it O(log(|V|) + log(|E|)) = O(log(|V|)
(remember that |E| <= |V|2, so O(log(|E|) =
O(log(|V|)). If we are really unlucky we need to do |E|
steps, so the entire analysis is O(|E|*log(|V|)). This is the
same running time as Prim's algorithm.

Kruskal's algorithm has the advantage that it doesn't
change priorities of the edges once they are in the priority
queue.

