
Kruskal's MST Algorithm



In Wednesday's class we looked at the Disjoint Set 
data structure that splits a bunch of data values 
into sets in such a way that each datum is in 
exactly one set. There are 2 primary methods for 
this structure: Find(x), which gives the set 
containing x, and Union(x, y), which merges the 
sets containing x and y into one set.



Clicker Q: What does the Find(x) method actually 
return?

A. A string with the name of the set containing 
x.

B. An array list of the elements of the set 
containing x.

C. A HashSet of the elements of the set 
containing x.

D. One element of the set containing x, called 
the "root" of the set.



Clicker Q: How does Union(x, y) join the sets 
containing x and y?

A. It finds all of the elemIents of the set 
containing x and adds them to the set 
containing y.

B. It makes x point at y.
C. It makes the root of the set containing x 

point at y.
D. It makes the root of the smaller of the two 

sets point a the root of the larger of the two 
sets.



Last Clicker Q: How long do Find(x) and Union(x,y) 
take if our sets contain a total of n objects?

A. Find: O(n)            Union: O( n*log(n) )
B. Find: O(n)            Union: O( n )
C. Find: O( log(n) )  Union: O( n )
D. Find: O( log(n) )  Union: O( n )



Joseph Kruskal, a mathematician/computer 
scientist/statistician at Bell Labs, developed 
another minimum spanning tree algorithm that 
uses our Disjoint Set data structure.   Here is his 
algorithm:



Kruskal's Algorithm:  Order the edges of the graph 
from smallest to largest.  Call MakeSets() on the 
nodes of the graph, consider each of them to be a 
singleton set.   Now take the edges in order from 
smallest to largest.  Let u and v  be the nodes 
connected by an edge.  If Find(u) == Find(v), which 
means that u and v are already connected, then 
discard the edge.  If Find(u) != Find(v) include this 
edge in our spanning tree and merge the sets 
containing u and v.  



Kruskal's algorithm will certainly form a graph 
with no cycles; when it gets n-1 edges it will 
connect all of the nodes of the graph and so will 
be a spanning tree.   How do we know it is a 
minimum spanning tree?



Recall the theorem we proved for Prim's algorithm:

Theorem:  Let S be any set of nodes in an 
undirected weighted graph, all of whose edge 
weights are distinct.  Let e, the edge from node v to 
node w, be the cheapest edge that connects some 
node in S to a node not in S.  Then edge e must be 
included in any minimum spanning tree for the 
graph.  



Let S be the set of nodes connected to v at the time we 
choose this edge.  w cannot be in S, or else this edge 
would form a cycle.  So e is an edge connecting S to the 
complement of S.  If there was a cheaper edge 
connecting S to its complement, we would have 
considered it previously (since we are taking the edges 
from smallest to largest) and we would have used it 
since it doesn't form a cycle.  This means that edge e is 
the cheapest edge connecting S to its complement; 
according to the theorem any minimum cost spanning 
tree must include e.    Even if the edge weights aren't 
all distinct, no cheaper tree can exist that does not 
include e.



Thus, we see that the edges chosen by Kruskal 
must form a minimum cost spanning tree.
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Kruskal's algorithm considers the edges in increasing order 
and uses those that connect nodes that are in different 
connected components.  For example:

We consider the edges in the following order:

1. D-C
2. D-E
3. A-B
4. F-E
5. B-G

6. C-F
7. C-B
8. A-C
9. F-G
10. E-C

11. B-F
12. A-D
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The first 5 edges we  consider cause no problems:

So far we have selected 5 edges to connect our 7 
nodes.  The nodes fall into 2 connected 
components: {C,D,E,F} and {A,B,G}. We need one 
more edge.  The next edge in order is C-F but C and 
F are in the same component.  The next edge is C-B 
and those vertices are in different components, so 
that completes our spanning tree.  
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Kruskal produces the same minimum spanning tree as 
Prim, which is no surprise. Note that we only considered 
about half of all of the edges when we were choosing 
edges for the spanning tree



What is our time analysis?   We could form a priority queue 
with the edges and their weights; it takes time   O( |E|)  to 
make the queue and time O ( log(|E|) ) to poll it.  We would 
make disjoint sets containing the nodes of the graph; this 
takes time O( |V| ) to make the singleton sets and time O( 
log(|V| ) each time we do a find.   Each step does a poll of 
the priority queue, 2 find operations, and possibly a union, 
making it  O( log(|V|) + log( |E|) )  = O( log(|V| )  
(remember that |E| <= |V|2, so       O(log(|E|) = 
O(log(|V|)).  If we are really unlucky we need to do |E| 
steps, so the entire analysis is O( |E|*log(|V|) ).  This is the 
same running time as Prim's algorithm.

Kruskal's algorithm has the advantage that it doesn't 
change priorities of the edges once they are in the priority 
queue.


